A new source of HO₂'?

Photophysical Oxidation (PPO) in the Atmosphere

Paolo Sebastianelli¹, Jenny A. Fisher¹, Maria Paula Pérez-Peña², Meredith J.T. Jordan³, Scott H. Kable²

¹University of Wollongong, Wollongong, NSW Australia, ²University of New South Wales, Sydney, NSW, Australia; ³University of Sydney, NSW, Australia;

Acknowledgements:

Australian Research Council DE200100549, DP190102013 and DP220102466; National Computational Merit Allocation Scheme m19 and q90

I. Motivation: a missing source of HO₂'?

- Welsh et al.¹ reported experimental evidence for *photophysical oxidation* (PPO) of CH₂O, where vibrationally-activated CH_2O^* reacts with O_2 to form radicals after excitation at energies less than the threshold for photochemical oxidation (PCO) (Fig. 1).
- Formaldehyde (CH_2O) can degrade via PPO forming HO_2 (Table 1)
- Theoretical calculations² show other carbonyls, including acetaldehyde (CH₃CHO), can also degrade via PPO, with different products than from PCO (Table 2).
- Acetaldehyde PPO produces peroxy acetyl radical (CH_3CO_3), with potential implications for peroxy acetyl nitrate (PAN) production.

Table 1. Net reaction from formaldehyde PCO vs PPO³.

Photochemical oxidation	(PCO)	Photophysical oxidation	(PPO)
$\mathrm{HCHO} + h\nu \rightarrow \mathrm{HCO}^{\bullet} + \mathrm{H}$	(6.1)	$\text{HCHO} + h\nu \rightarrow \text{HCHO}^*$	(6.2)
$H' + O_2 \rightarrow HO_2'$	(6.3)	$\text{HCHO}^* + \text{O}_2 \rightarrow \text{HCO}^* + \text{HO}_2^*$	(6.4)
$\mathrm{HCO}^{\prime} + \mathrm{O}_2 \rightarrow \mathrm{HO}_2^{\prime} + \mathrm{CO}$	(6.5)	$\text{HCO}' + \text{O}_2 \rightarrow \text{HO}_2' + \text{CO}$	(6.6)
Net PCO reaction		Net PPO reaction	
$\mathrm{HCHO} + h\nu + 2\mathrm{O}_2 \rightarrow 2\mathrm{HO}_2^{\prime} + \mathrm{CO}_2^{\prime}$	(6.7)	$\mathrm{HCHO} + h\nu + 2\mathrm{O}_2 \rightarrow 2\mathrm{HO}_2^{} + \mathrm{CO}$	(6.8)

Table 2. Net reaction from acetaldehyde PCO vs PPO³.

Photochemical oxidation	(PCO)	Photophysical oxidation	(PPO)
$CH_3CHO + h\nu \rightarrow CH_3 + HCO'$	(6.9)	$CH_3CHO + h\nu \rightarrow CH_3CHO^*$	(6.10)
$\mathrm{HCO}^{\bullet} + \mathrm{O}_{2} \rightarrow \mathrm{HO}_{2}^{\bullet} + \mathrm{CO}$	(6.11)	$\mathrm{CH}_{3}\mathrm{CHO}^{*} + \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3}\mathrm{CO}^{\bullet} + \mathrm{HO}_{2}^{\bullet}$	(6.12)
$CH_3^{\bullet} + O_2 \rightarrow CH_3O_2^{\bullet}$	(6.13)	$CH_3CO' + O_2 \rightarrow CH_3CO_3' + HO_2'$	(6.14)
Net PCO reaction		Net PPO reaction	
$CH_3CHO + h\nu + 2O_2 \rightarrow CH_3O_2 + HO_2 + CO$	(6.15)	$CH_3CHO + h\nu + 2O_2 \rightarrow CH_3CO_3 + HO_2$	(6.16)

Figure 1. Energy level diagram for CH₂O PPO (red) and PCO (green) pathways.¹

Key Question: Is the atmospheric PPO an important source of HO₂?

II. Methodology: Global model simulation of formaldehyde and acetaldehyde

- GEOS-Chem v14.3.0. 3-D formaldehyde (CH₂O) and • acetaldehyde (CH_3CHO) 1-month simulations.
- Assessing formaldehyde photolysis in GEOS-Chem for ulletwavelengths between 338 and 356 nm. (Fig.2)
- Three potential acetaldehyde PCO channels (Fig. 3), but 6.9b is not energetically accessible.
- GEOS-Chem currently includes 12% molar yield of CH₃CO₃ inferred from observation of CO₂ formation⁵ and erroneously attributed to channel 6.9c – we now understand this to be PPO (with molar yield = 12%) consistent with observed quantum yield = 0.07^6).
- We evaluate the difference between model simulations: - including formaldehyde $QY_{PPO} = 0.05$ for 338 < λ < 356 nm (Fig.2)

- removing acetaldehyde PPO photolytic contribution for $340 < \lambda < 363$ nm (Fig.5).

Wavenu	umber (cm ⁻ ')		
			330
	Wave	Wavelength (nm)	Wavelength (nm)

formaldehyde PPO contribution below 30,300 cm⁻¹.

UNIVERSITY

AUSTRALIA

OF WOLLONGONG

III.Results

UNSW

 $CH_{2}O$

- Adding $QY_{PPO} = 0.05$, for 338 < λ < 356 nm, in CH₂O radical dissociation path produced a +0.163 % increase in $[HO_2]$ and -1.148 % decrease for $[CH_2O]$ (1-month simulations (lev=0) are shown in Fig.6 and 7).
- Switching off CH₂O photolysis radical path between 331 and 338 nm (PPO domain) produced a -0.047 % decrease in $[HO_2]$ and +0.234 % increase in $[CH_2O]$ (not shown).

CH₃CHO

- Change in $[HO_2]$ attributable to the acetaldehyde PPO in the range 340 < λ < 363 nm is small: -6.22x10⁻⁶ of % change. (1-month simulations (lev=0) are shown in Fig.8).
- Similar behavior can be observed for [CH₃CHO]: + 0.002 % change (1-month simulations (lev=0) are shown in Fig.9).
- Using a different approach, Perez Pena³ showed that acetaldehyde PPO contributes on average only 0.6% of total global tropospheric CH_3CO_3 production, compared to ~38% from $CH_3CHO +$ OH and that change in PAN production attributable to PPO is <2% everywhere (not shown).

IV. Take-home messages and future work

- \geq PPO is a missing source of [HO₂], but 1-month GEOS-Chem simulations show the impacts from individual species are small.
- \succ Theoretical calculations² show other carbonyls and several other molecular species con go through PPO, making the sum of contributions to [HO₂⁻] changes potentially atmospherically relevant.
- > Future model experiments will target combined effects of PPO from multiple species, impacts of wavelength dependency, and implications of reverse pressure dependence of PPO relative to PCO.

Figure 8. [HO₂[•]] % change removing acetaldehyde photolysis between 340 and 363 nm. 1-month sim, lev = 0

Artwork by Samantha Hill Dharawal/Wandandian woma

Figure 9. [CH₃CHO] % change removing acetaldehyde photolysis between 340 and 363 nm. 1-month, lev = 0

References: ¹Welsh et al. (2023), doi: 10.1038/s41557-023-01272-4; ²Corrigan (2021), PhD Thesis; ³Perez Pena, (2023), PhD Thesis; ⁴Atkinson et al. (2004), IUPAC Data Sheet P2; ⁵Moortgat et al. (2010), doi: 10.1002/cphc.201000757; ⁶ Morajkar et al. (2014), doi: 10.1063/1.4878668

Figure 5. CH₃CHO QY Pressure dependence